
The standard library is special. Let’s

change that.

Intro

Hello everyone! Today I will be talking about the standard library in Rust. More

specifically — about how the standard library has a special place within the Rust

ecosystem and how and why we should change that.

Disclaimer

Before I begin, I would like to provide a brief disclaimer. No member of any team has

seen this talk; everything here is my opinion alone. This is partly observational and

partly aspirational. Needless to say, the latter is not guaranteed to happen.

How is the standard library special?

So, what exactly do I mean when I say the standard library is “special”? And more

importantly, why should I care? As it turns out, the standard library is special in a

number of ways.

First, the standard library uses nightly language features …on stable. While a

large number of these features are intended to be stabilized, some of them are

intended to remain on nightly forever. These should be removed wherever possible.

The standard library is also capable of bypassing coherence. This is not strictly

necessary, either. Currently, core , alloc , and std are three separate crates. If

they were merged into a single crate, the need for bypassing coherence would be

wholly eliminated.

Another manner in which the standard library is unique is that it has a prelude.

Other crates have preludes as well, but they are not true preludes, as they must be

manually imported in every module.

The most obvious situation where the standard library is special is that it is not

included with Cargo. While seemingly inconsequential, it does have real-world effects.

The standard library does not have any publicly-exposed feature flags that could be

used for a capability-based library. Among other possibilities, this would permit for file

system or network access to be disabled. std is also built for a single optimization

goal — speed — while use cases like embedded systems may reasonably want to

optimize for size instead. Another limitation is that std is not independently

versioned and is incapable of making breaking changes. There is a possible future

where breaking changes could be made without std 2.0, but I will not be going into

this today.

Finally, we already are making the standard library less special. I think it makes

sense for the effort to be made in an organized manner rather than ad hoc, as it has

been for years.

Minimal subset

Okay, so we want to make the standard library less special. Surely there is a limit to

this, right? In a word, yes. But that raises a question: what inherently must be

special-cased?

Language items

First up are language items. A language item is a function, type, trait, et cetera that

the compiler needs to know about for a variety of reasons. There are 130 of these.

As an example, the Add trait is a lang item because the compiler needs to know

about it in order to support the “plus” operator. Many of these are necessary, such

as those used for syntax integration and the runtime for Rust (namely panicking and

allocation). However, the number of lang items has been increasing over time, in part

because some are unnecessary.

 Result and its variants are all lang items. Why? Optimization. They were not lang

items until August 2020, when they were added to give a slight performance gain. So

why not instead implement an optimization for all enum s that are like Result ? It

avoids the need for a language item and is generally applicable to the entire

ecosystem. That would give a performance benefit for all crates, not just the standard

library.

Compiler intrinsics

Another item that must be special-cased is compiler intrinsics. As its name

suggests, an intrinsic is a function that is implemented in the compiler itself. There

are 232 of these, and every backend must implement them. Some exist to interact

directly with hardware; 101 exist just for atomics. Other intrinsics exist to access

information that only the compiler has. How large is a type? That is impossible to

answer without asking the compiler.

Like language items, a number of compiler intrinsics can be removed. Taking the

square root of a floating point value is an intrinsic, but this can be rewritten to use

inline assembly. On 64-bit x86 architectures, I have actually verified that this is

possible without any side effects. Other examples that I easily found are assume ,

which can be trivially implemented in terms of unreachable , and unlikely in terms

of likely .

Language items and compiler intrinsics form the backbone of what must inherently be

special-cased. For that reason, the number should be shrunk to the bare minimum

and moved to its own crate, which will remain special. This would permit the rest of

the standard library to continue its journey towards being “just another crate”.

Prior history

In the beginning, I mentioned that this talk was partly observational. This is because

making std less special is not a new idea. There has been a fair amount of work

made on this front already, going back multiple years.

There is a working group, called the “ std aware Cargo” working group, whose

goal is to permit users to build std locally. An experimental implementation of this

exists on nightly. Bugs do exist, such as not working with code coverage, but it is

largely usable. The ergonomics can and will be improved in the future, as it can

sometimes be finicky to make what you want to happen, happen.

In more concrete terms, there is also #[diagnostic::on_unimplemented] . This

has existed inside the standard library for quite some time as

 #[rustc_on_unimplemented] . It improves error messages when a trait is not

implemented when it is expected to be, likely due to a trait bound. Moving this away

from a rustc attribute in favor of a diagnostic namespace has been accepted

by an RFC, which is partially implemented at the moment.

Perhaps the most surprising item in this list is that the deprecated attribute was

originally only for the standard library. It has a lengthy history. Beginning prior to the

Rust 1.0 release, the original implementation was renamed to rustc_deprecated

and made available only to the standard library. A new deprecated attribute was

then introduced, which shared no code whatsoever with rustc_deprecated . The

 deprecated attribute was stabilized about a year after Rust 1.0 was released, but

 rustc_deprecated remained. This was the case until March 2022 when I fully

merged the front end for the two attributes, at which point the functionality was nearly

identical.

I say nearly identical because there is still one difference.

Suggestions on deprecated items

That is suggestions for deprecated items. This allows authors to indicate what a

deprecated item is replaced with. This currently has to be done via the note field,

which requires the end user to read and manually apply the change.

In this example, alpha has been deprecated in favor of beta . This is indicated

with a new suggestion field. With the suggestion, the compiler will produce better

diagnostics; it will clearly show that calls to alpha must be replaced with calls to

 beta . This suggestion is machine-applicable, by the way, so it is usable with both

 cargo fix and rust-anaylzer !

This feature has been implemented since January 2019 when it was still part of the

 rustc_deprecated attribute. When that was merged with deprecated , the feature

was made available to everyone on nightly, which is its current status.

Unspecified behavior

There is one interesting manner in which the standard library is unique. That is the

fact that the standard library relies on unspecified behavior. There is a comment in

the standard library that says “only std can make this guarantee”. A handful of

similar comments can be found throughout std . When I first ran across a comment

like this, I found it peculiar. Why would the standard library do this?

During my research for this talk, I found two primary situations where the standard

library relies on behavior that is not guaranteed to other libraries. One involved niche

value optimization. That situation is not unspecified behavior, but rather it is not

guaranteed to compile at all.

The other case is where the standard library relies on the size and layout of fat

pointers, which is what this comment is regarding. Only one problem — both are

unspecified. The compiler guarantees nothing about this code. If the layout of a

pointer changes, the behavior will quietly change. Far worse is if the size of a pointer

changes. That would result in undefined behavior, as some code would be performing

an out of bounds read.

While it has always been the case that a fat pointer is twice the size of the usize

type, as far as I can tell this has not been formally guaranteed. The same is true for

the layout — it has never changed but is not guaranteed.

This code can only exist because the compiler is coupled with the standard library.

As far as the standard library is concerned, its code works with the current behavior

and that is all that matters. With that said, to make the standard library less special,

there are two options. One is to make fat pointers into a language item, which would

ensure that it is implemented by the compiler and thus remain in sync. The other

option, of course, is to simply guarantee the size and layout of fat pointers. That

would be preferable in my opinion, as it would also be a small but important step

towards a stable ABI.

Negative implementations

On to something that is still on nightly, yet unlike most nightly features is exposed

within the public API of the standard library. That feature is negative implementations.

Negative impls are functionally a promise to never implement a trait.

Likely the most common use case for wanting this is to opt out of auto traits —

namely Send and Sync . This is technically possible already, but doing so is quite

unergonomic, as it requires some hackery. How is this possible? Well…the

standard library contains types that have a negative implementation of these traits.

Specifically, MutexGuard implements not Send , Cell implements not Sync ,

and mutable pointers implement both not Send and not Sync . Which is great,

except you likely want to avoid storing these types in memory. So instead, you can

wrap them in a PhantomData , which does not exist at runtime. But it sure would be

simpler if anyone could opt out of auto traits without this hack.

Negative impls have other uses, though! They are also useful for trait resolution,

as they allow implementations that would seemingly overlap. As an example, the

standard library has an impl that permits any type implementing Error to be

converted into a Box<dyn Error> . But what if we also wanted to allow converting

a string to a Box<dyn Error> ? For this, we need a diagram. At the top are types

that may implement Error (either currently or in the future), on the left are types that

already do, and on the right sit types that never will. All types start at the top of the

diagram, but authors may choose to move down to either the left or the right. The

blanket impl for all error types considers all types that may implement Error ,

regardless of whether they currently do. For this reason, the second line is prohibited

— strings may implement Error in the future. In order to satisfy the overlap check in

the compiler, we must explicitly promise that strings will never implement Error .

In doing so, we have moved strings to the right side of the diagram, eliminating

them from the blanket implementation.

It is worth noting at this point that, as I said previously, all authors may choose to

move down in the diagram. However, moving back up is a breaking change, as it is

removing a promise that has been made to both the compiler and other users. This is

true for both positive and negative implementations.

Specialization

One long-awaited feature of Rust — specialization. Specialization is a feature that, to

an extent, allows otherwise overlapping implementations. The limitation here is that

one impl must be a subset of the other. However, this still allows for very useful

behavior.

Currently, Default is only implemented for arrays of lengths up to 32. This is

because an array with length zero does not require a Default bound, while all other

lengths do. With specialization, we could have a default impl for all lengths,

specializing length zero to avoid the bound. While this seems simple enough, this

example does not currently compile on nightly.

While specialization is a very powerful feature, it is also very difficult to get right. The

current implementation is known to be unsound. There is min_specialization

that attempts to avoid unsoundness, but it still falls short.

Likely due to the difficulty, work on specialization is largely stagnated.

Specialization likely needs people with a fair amount of knowledge of type theory to

come up with a sound subset, which would require significant effort before it could be

stabilized.

Despite the difficulty, specialization is currently used for optimization. All uses are

carefully checked, and none are present in the public API.

The RFC that proposed specialization was posted in July 2015, just two months after

Rust 1.0 was released. In the RFC, specialization was described as a “relatively

small extension to the trait system”. I think we can all agree that this was a tad

optimistic. Specialization is probably the hardest item mentioned in this talk.

Crate preludes

While specialization may be extremely difficult, here is one that should not be. A

prelude is something provided by a crate that is automatically imported in every

module. This is what lets you use Vec without having to import it manually. The

contents of core::prelude and std::prelude are implicit by default.

 alloc::prelude used to exist, but it was removed because its contents were not

automatically in scope.

So I have a question. Why not let every crate declare a prelude? While some crates

do have modules that they call prelude, their contents are not automatically in scope.

What I would like to do is relatively simple from a design perspective.

First, we annotate any items that will make up part of the prelude. Any number of

items can be annotated, and they do not need to be in a single, shared module. In this

case, we are also renaming the item. This is the same as an ordinary use statement,

and is used here to avoid potential naming conflicts.

What if we want to exclude the prelude in a certain location? Not an issue, modules

can opt out as necessary. This would be accomplished by placing an annotation on

the module and indicating the crates whose preludes we want to exclude.

Probably the most important question, what prevents crates from declaring enormous

preludes, ruining the experience for everyone? This has a simple solution: leave it

up to the end user! The end user chooses which preludes to use. In Cargo.toml ,

a user must opt-in to using a prelude from a given crate. This allows for maximum

flexibility, as nothing is ever in scope without it being explicitly requested.

While custom preludes were first proposed in February 2015, this is a significant

deviation from that proposal. I believe that crate preludes would provide significant

benefit when used in moderation, with crates such as itertools and rayon being

excellent use cases.

Stability attributes

One final item for today — stability attributes. This is likely the most visible manner in

which the standard library can do things that other libraries cannot. Stability

attributes are used to indicate if an item is stable or not.

As an example, OnceCell is stable, and the stability attribute indicates both the

feature name that it was previously available under and the version in which that

feature was stabilized.

What if an item is not stable, though? Unstable items are very useful, as they allow

crates to experiment with APIs without providing a semver guarantee. LazyLock is

currently unstable. The attribute shows the feature name that is used to enable the

use of LazyLock . More importantly, it shows the issue number! This allows users to

know exactly where to look if they want to see the current status or, even better,

provide feedback.

What is noteworthy is that every public item requires a stability attribute if they are

used anywhere in a crate. This is to ensure that everything is either stable or

unstable. It is not possible to be neither, after all.

With that said, it is not possible to use unstable items freely. Unstable items are

opt-in and require a feature gate. If you try to use an unstable item incorrectly, you

will get a compiler error. The only way to avoid this error is to add the feature gate

at the crate root.

There are edge cases to consider, such as when an unstable item is used in a stable

context, such as a trait bound. This is allowed, but it should absolutely have a lint to

ensure that it is deliberate, as it would be confusing for downstream users if not

handled carefully.

The stable and unstable attributes handle whether an item is stable in general,

but there are also const_stable and const_unstable attributes to handle whether

functions are guaranteed to be const fn going forward.

Stability attributes have been around for a very long time in the Rust world. In

October 2014, it was said in an official blog post that “library authors can continue

to use stability attributes”. It has been almost nine years since that was said. Yet

contrary to the post, stability attributes are explicitly only for the standard library at

the moment. Trying to use them in other crates results in a warning from the compiler.

I think it is time that we finally provide this functionality to everyone, as we know that

it is extraordinarily useful.

Progress

That is quite a bit. What has actually been done on these fronts? Surprisingly, a fair

amount.

Integration with Cargo is being worked on by a working group that exists specifically

for this purpose. It is available on nightly and it is in a usable state.

Reducing the number of lang items and intrinsics is a goal with no work done yet. I

intend to look into some of the simpler cases, including those mentioned earlier. I

believe some can be trivially eliminated.

Suggestions on deprecated items has no formal proposal, but it has been

implemented for a while. It is available on nightly under the deprecated_suggestion

feature flag. There are a couple of points that will likely need to be resolved before

stabilization, but it should not require too much effort.

For unspecified behavior in the standard library, this is thankfully very small in

scope. There will need to be a discussion on the desired solution, but any

implementation would occur soon afterwards.

Negative impls are implemented on nightly, but the feature has known bugs and

edge cases that must be resolved before it could be stabilized.

Specialization is unfortunately stagnated. As far as I can tell, no one is actively

working on it. However, the desire for specialization unquestionably exists. Someone

with knowledge of type theory is likely needed to make progress. Given this, there is

not a clear timeframe for the issues to be resolved, let alone for the feature to be

stabilized.

As to crate preludes, I am currently writing an RFC for this. As anyone familiar with

the process knows, this takes a while! There will be significant feedback and revisions

before it is even accepted.

After I finish writing the RFC for crate preludes, I will begin working on one for

stability attributes. The attributes are widely used within the standard library, so we

possess the capability and knowledge to make this happen. There are known

limitations with stability attributes that should be resolved before being made widely

available, but it is a solvable problem.

Overall, many of the items mentioned today have already been worked on, though the

level of work varies. Some need formal proposals, while others need subject-matter

experts. All need additional work. I am personally doing what I can to bring useful

features from the standard library to everyone. I hope that you share my enthusiasm

for this goal and hope that you will assist in achieving it however possible. Making the

standard library less special will take a significant amount of time and effort, but it is

an overarching and long-standing goal of the Rust project, and one that the Rust

community at large will benefit from.

Outro

With that, there is a slew of information on the screen. You can find me on many

platforms as jhpratt, including GitHub and Mastodon. If you are interested in

sponsoring my work, please do so! I assure you it will be worthwhile. I am Jacob

Pratt. Thank you!

