I'he standarad
library Is special.
Let's change that.

Jacob Pratt
2023-09-13

Albugquerque

Disclaimer

How Is the standard library
special? Why change?

How Is the standard library
special? Why change?

e use of nightly language features

How Is the standard library
special? Why change?

e use of nightly language features...on stable

How Is the standard library
special? Why change?

e use of nightly language features...on stable

e can bypass coherence

How Is the standard library
special? Why change?
e use of nightly language features...on stable

e can bypass coherence

e has a prelude

How Is the standard library
special? Why change?

e use of nightly language features...on stable
e can bypass coherence
e has a prelude

e not included with Cargo

How Is the standard library
special? Why change?

e use of nightly language features...on stable
e can bypass coherence

e has a prelude

e not included with Cargo

= no feature flags

How Is the standard library
special? Why change?

use of nightly language features...on stable
can bypass coherence

has a prelude

not included with Cargo

= no feature flags

= No options for optimization

How Is the standard library
special? Why change?

use of nightly language features...on stable
can bypass coherence

has a prelude

not included with Cargo

= no feature flags

= No options for optimization

= NO versioning

How Is the standard library
special? Why change?

use of nightly language features...on stable
can bypass coherence

has a prelude

not included with Cargo

= no feature flags

= No options for optimization

= NO versioning

= incapable of making breaking changes

How Is the standard library
special? Why change?

use of nightly language features...on stable
can bypass coherence

has a prelude

not included with Cargo

= no feature flags

= No options for optimization

= NO versioning

= incapable of making breaking changes

We already are making the standard library less special.

Minimal subset

Minimal subset

What inherently must be special-cased?

Minimal subset
What inherently must be special-cased?

e Language items

Minimal subset
What inherently must be special-cased?

e Language items

= There are currently 130 language items.

Minimal subset
What inherently must be special-cased?

e Language items
= There are currently 130 language items.

» Many are necessary; some can be removed.

Minimal subset
What inherently must be special-cased?

e Language items
= There are currently 130 language items.

» Many are necessary; some can be removed.

e Compiler intrinsics

Minimal subset
What inherently must be special-cased?

e Language items
= There are currently 130 language items.

» Many are necessary; some can be removed.

e Compiler intrinsics

= There are currently 232 compiler intrinsics.

Minimal subset
What inherently must be special-cased?

e Language items
= There are currently 130 language items.

» Many are necessary; some can be removed.

e Compiler intrinsics
= There are currently 232 compiler intrinsics.

= \WWe can eliminate lots of these as well.

Prior History

Prior History

e "std aware Cargo" working group

Prior History

e "std aware Cargo" working group

» -Zbuild-std is available on nightly.

Prior History

e "std aware Cargo" working group

» -Zbuild-std is available on nightly.

e tHdiagnostic ::on_unimplemented]

Prior History

e "std aware Cargo" working group

» -Zbuild-std is available on nightly.

e tHdiagnostic ::on_unimplemented]

» Previously #{ rustc_on_unimplemented]

Prior History

e "std aware Cargo" working group

» -Zbuild-std is available on nightly.

e tHdiagnostic::on_unimplemented]

» Previously #{ rustc_on_unimplemented]

» RFC-accepted, partially implemented

Prior History

e "std aware Cargo" working group

» -Zbuild-std is available on nightly.

e tHdiagnostic::on_unimplemented]

» Previously #{ rustc_on_unimplemented]

» RFC-accepted, partially implemented

e #{deprecated] was originally only for the standard library.

Prior History

e "std aware Cargo" working group

» -Zbuild-std is available on nightly.

e tHdiagnostic::on_unimplemented]

» Previously #{ rustc_on_unimplemented]

» RFC-accepted, partially implemented

e #{deprecated] was originally only for the standard library.

= Original implementation renamed to
tH rustc_deprecated] before Rust 1.0

Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

#H deprecated(suggestion = "beta")]
fn alpha() {}

Suggestions for deprecated items
Indicate what a deprecated item is replaced with.

#H deprecated(suggestion = "beta")]
fn alpha() {}

help: replace the use of the deprecated function

L beta();

I i e e

Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

#H deprecated(suggestion = "beta")]
fn alpha() {}

help: replace the use of the deprecated function

|
L | beta();
|

i e e

Usable with cargo fix and rust-analyzer.

The standard library relies
on unspecified behavior.

The standard library relies
on unspecified behavior.

// 0Only std can make this guarantee.

The standard library relies
on unspecified behavior.

// 0Only std can make this guarantee.

e The standard library relies on the size and layout of fat pointers.

The standard library relies
on unspecified behavior.

// 0Only std can make this guarantee.

e The standard library relies on the size and layout of fat pointers.

e Both are unspecified.

The standard library relies
on unspecified behavior.

// 0Only std can make this guarantee.
e The standard library relies on the size and layout of fat pointers.
e Both are unspecified.

e This code can only exist because the
compiler is coupled with the standard library.

Negative implementations

Negative implementations

Promise to never implement a trait

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

= Currently requires hackery

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits
= Currently requires hackery
MutexGuard<' , ()> : !Send

Negative implementations
Promise to never implement a trait

e Allow opting out of auto traits
= Currently requires hackery

MutexGuard<' , ()> : !Send
Cell<()> : ISync

Negative implementations
Promise to never implement a trait

e Allow opting out of auto traits
= Currently requires hackery

MutexGuard<' , ()> : !Send
Cell<()> : ISync
*mut () : !Send + !Sync

Negative implementations

Promise to never implement a trait

o Allow opting out of auto traits

= Currently requires hackery

Phantom
Phantom
Phantom

Data<MutexGuard<' , ()>> : !Send
Data<Cell<()>> : 1Sync
Data<*mut ()> : !Send + !Sync

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

e Used for trait resolution

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

e Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

e Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

e Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}

T: ?Error

[1

T: Error T: lError

Negative implementations
Promise to never implement a trait

e Allow opting out of auto traits

e Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}

T: ?Error

[1

T: Error

Negative implementations
Promise to never implement a trait

o Allow opting out of auto traits

e Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}
impl !'Error for &§str {}

T: ?Error

[1

T: Error

Negative implementations
Promise to never implement a trait

e Allow opting out of auto traits

e Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}
impl !'Error for &§str {}

T: ?Error

[1

T: Error T: lError

Specialization

Specialization

o Allows otherwise overlapping 1mpls

Specialization

o Allows otherwise overlapping 1mpls

impl<T> Default for [T; 0] {}
1mpl<T> Default for [T; 1]
where T: Default {}

Specialization

o Allows otherwise overlapping 1mpls

impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
where T: Default {}

Specialization

o Allows otherwise overlapping 1mpls

impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
where T: Default {}

e Current implementation is unsound.

Specialization

o Allows otherwise overlapping 1mpls

impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
where T: Default {}

e Current implementation is unsound.

e Largely stagnated.

Specialization

o Allows otherwise overlapping 1mpls

impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
where T: Default {}

e Current implementation is unsound.
e Largely stagnated.

e Used for optimizations; not present in public API

Specialization

o Allows otherwise overlapping 1mpls

impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
where T: Default {}

e Current implementation is unsound.
e Largely stagnated.

e Used for optimizations; not present in public API

e "Relatively small extension to the trait system"

Crate preludes

Crate preludes

e core::prelude and std :: prelude are implicit by default.

Crate preludes

e core::prelude and std:: prelude are implicit by default.

= alloc:: prelude used to exist on nightly.

Crate preludes

e core::prelude and std :: prelude are implicit by default.
= alloc:: prelude used to exist on nightly.

e Why not let every crate declare a prelude?

Crate preludes

e core::prelude and std:: prelude are implicit by default.
= alloc:: prelude used to exist on nightly.

e Why not let every crate declare a prelude?

t{prelude(as)]
pub trait Itertools: Iterator { /* ... */ }

Crate preludes

e core::prelude and std :: prelude are implicit by default.
= alloc:: prelude used to exist on nightly.

e Why not let every crate declare a prelude?

t{prelude(as)]
pub trait Itertools: Iterator { /* ... */ }

e Opt-out as necessary.

Crate preludes

e core::prelude and std :: prelude are implicit by default.
= alloc:: prelude used to exist on nightly.

e Why not let every crate declare a prelude?

t{prelude(as)]
pub trait Itertools: Iterator { /* ... */ }

e Opt-out as necessary.

t{no_prelude(itertools)]
mod foo { /* ... */ }

Crate preludes

e core::prelude and std:: prelude are implicit by default.
= alloc:: prelude used to exist on nightly.

e Why not let every crate declare a prelude?

t{prelude(as)]
pub trait Itertools: Iterator { /* ... */ }

e Opt-out as necessary.

t{no_prelude(itertools)]
mod foo { /* ... */ }

e The end user chooses which crate's preludes to use.

Crate preludes

e core::prelude and std :: prelude are implicit by default.
= alloc:: prelude used to exist on nightly.

e Why not let every crate declare a prelude?

t{prelude(as)]
pub trait Itertools: Iterator { /* ... */ }

e Opt-out as necessary.

t{no_prelude(itertools)]
mod foo { /* ... */ }

e The end user chooses which crate's preludes to use.

[dependencies]
itertools = { prelude = true }

Stability attributes

Stability attributes

e Used to indicate if an item is stable or not

Stability attributes

e Used to indicate if an item is stable or not

#H stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

Stability attributes

e Used to indicate if an item is stable or not

#{stable(feature = "once cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

t{unstable(feature = "lazy cell", issue = "109736")]
pub struct LazylLock<T, F = fn() -> T> { /* ... */ }

Stability attributes

e Used to indicate if an item is stable or not

#{stable(feature = "once cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

t{unstable(feature = "lazy cell", issue = "109736")]
pub struct LazylLock<T, F = fn() -> T> { /* ... */ }

e All pub items require a stability attribute.

Stability attributes

e Used to indicate if an item is stable or not

#H stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

t{unstable(feature = "lazy cell", issue = "109736")]
pub struct LazylLock<T, F = fn() -> T> { /* ... */ }

o All pub items require a stability attribute.

e Unstable items are opt-in and require a feature gate.

Stability attributes

e Used to indicate if an item is stable or not

#H stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

t{unstable(feature = "lazy cell", issue = "109736")]
pub struct LazylLock<T, F = fn() -> T> { /* ... */ }

e All pub items require a stability attribute.

e Unstable items are opt-in and require a feature gate.

let _ = LazyLock::new(|l {});

Stability attributes

e Used to indicate if an item is stable or not

#H stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

t{unstable(feature = "lazy cell", issue = "109736")]
pub struct LazylLock<T, F = fn() -> T> { /* ... */ }

o All pub items require a stability attribute.

e Unstable items are opt-in and require a feature gate.

#t! [feature(std:: lazy cell)]
let _ = LazyLock::new(|l {});

Stability attributes

e Used to indicate if an item is stable or not

#H stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

t{unstable(feature = "lazy cell", issue = "109736")]
pub struct LazylLock<T, F = fn() -> T> { /* ... */ }

e All pub items require a stability attribute.

e Unstable items are opt-in and require a feature gate.

#t! [feature(std:: lazy cell)]
let _ = LazyLock::new(|l {});

e "Library authors can continue to use stability attributes”

Progress

Progress

e Integration with Cargo

Progress

e Integration with Cargo

e Reducing number of lang items & intrinsics

Progress

e Integration with Cargo
e Reducing number of lang items & intrinsics

e Suggestions on deprecated items

Progress

Integration with Cargo
Reducing number of lang items & intrinsics
Suggestions on deprecated items

Unspecified behavior

Progress

Integration with Cargo

Reducing number of lang items & intrinsics
Suggestions on deprecated items
Unspecified behavior

Negative implementations

Progress

e Integration with Cargo

e Reducing number of lang items & intrinsics
e Suggestions on deprecated items

e Unspecified behavior

 Negative implementations

e Specialization

Progress

e Integration with Cargo

e Reducing number of lang items & intrinsics
e Suggestions on deprecated items

e Unspecified behavior

e Negative implementations

e Specialization

e Crate preludes

Progress

e Integration with Cargo

e Reducing number of lang items & intrinsics
e Suggestions on deprecated items

e Unspecified behavior

e Negative implementations

e Specialization

e Crate preludes

e Stability attributes

The standard library is
special. Let's change that.

. Jacob Pratt

() @jhpratt
@ @jhpratt@mastodon.social

B9 jacob@jhpratt.dev
@ jhpratt.dev
Q) sponsor.jhpratt.dev

2023-09-13

Albugquerque

