
The standard
library is special.
Let's change that.

Disclaimer

How is the standard library
special? Why change?

How is the standard library
special? Why change?

use of nightly language features

How is the standard library
special? Why change?

use of nightly language features…on stable

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

not included with Cargo

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

not included with Cargo

no feature flags

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

not included with Cargo

no feature flags

no options for optimization

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

not included with Cargo

no feature flags

no options for optimization

no versioning

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

not included with Cargo

no feature flags

no options for optimization

no versioning

incapable of making breaking changes

How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

not included with Cargo

no feature flags

no options for optimization

no versioning

incapable of making breaking changes

We already are making the standard library less special.

Minimal subset

Minimal subset

What inherently must be special-cased?

Minimal subset

What inherently must be special-cased?

Language items

Minimal subset

What inherently must be special-cased?

Language items

There are currently 130 language items.

Minimal subset

What inherently must be special-cased?

Language items

There are currently 130 language items.

Many are necessary; some can be removed.

Minimal subset

What inherently must be special-cased?

Language items

There are currently 130 language items.

Many are necessary; some can be removed.

Compiler intrinsics

Minimal subset

What inherently must be special-cased?

Language items

There are currently 130 language items.

Many are necessary; some can be removed.

Compiler intrinsics

There are currently 232 compiler intrinsics.

Minimal subset

What inherently must be special-cased?

Language items

There are currently 130 language items.

Many are necessary; some can be removed.

Compiler intrinsics

There are currently 232 compiler intrinsics.

We can eliminate lots of these as well.

Prior History

Prior History
"std aware Cargo" working group

Prior History
"std aware Cargo" working group

-Zbuild-std is available on nightly.

Prior History
"std aware Cargo" working group

-Zbuild-std is available on nightly.

#[diagnostic::on_unimplemented]

Prior History
"std aware Cargo" working group

-Zbuild-std is available on nightly.

#[diagnostic::on_unimplemented]

Previously #[rustc_on_unimplemented]

Prior History
"std aware Cargo" working group

-Zbuild-std is available on nightly.

#[diagnostic::on_unimplemented]

Previously #[rustc_on_unimplemented]

RFC-accepted, partially implemented

Prior History
"std aware Cargo" working group

-Zbuild-std is available on nightly.

#[diagnostic::on_unimplemented]

Previously #[rustc_on_unimplemented]

RFC-accepted, partially implemented

#[deprecated] was originally only for the standard library.

Prior History
"std aware Cargo" working group

-Zbuild-std is available on nightly.

#[diagnostic::on_unimplemented]

Previously #[rustc_on_unimplemented]

RFC-accepted, partially implemented

#[deprecated] was originally only for the standard library.

Original implementation renamed to
#[rustc_deprecated] before Rust 1.0

Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

#[deprecated(suggestion = "beta")]
fn alpha() {}

Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

#[deprecated(suggestion = "beta")]
fn alpha() {}

help: replace the use of the deprecated function
 |
L | beta();
 | ~~~~

Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

#[deprecated(suggestion = "beta")]
fn alpha() {}

help: replace the use of the deprecated function
 |
L | beta();
 | ~~~~

Usable with cargo fix and rust-analyzer.

The standard library relies
on unspecified behavior.

The standard library relies
on unspecified behavior.

// Only std can make this guarantee.

The standard library relies
on unspecified behavior.

// Only std can make this guarantee.

The standard library relies on the size and layout of fat pointers.

The standard library relies
on unspecified behavior.

// Only std can make this guarantee.

The standard library relies on the size and layout of fat pointers.

Both are unspecified.

The standard library relies
on unspecified behavior.

// Only std can make this guarantee.

The standard library relies on the size and layout of fat pointers.

Both are unspecified.

This code can only exist because the
compiler is coupled with the standard library.

Negative implementations

Negative implementations

Promise to never implement a trait

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Currently requires hackery

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Currently requires hackery

 MutexGuard<'_, ()> : !Send

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Currently requires hackery

 MutexGuard<'_, ()> : !Send
 Cell<()> : !Sync

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Currently requires hackery

 MutexGuard<'_, ()> : !Send
 Cell<()> : !Sync
 mut () : !Send + !Sync*

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Currently requires hackery

 MutexGuard<'_, ()> : !Send
 Cell<()> : !Sync
 mut () : !Send + !Sync*

PhantomData<MutexGuard<'_, ()>> : !Send
PhantomData<Cell<()>> : !Sync
PhantomData<*mut ()> : !Send + !Sync

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Used for trait resolution

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error T: !Error

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error T: !Error

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}
impl !Error for &str {}

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error T: !Error

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error

Negative implementations

Promise to never implement a trait

Allow opting out of auto traits

Used for trait resolution

impl<E> From<E> for Box<dyn Error> where E: Error {}
impl From<&str> for Box<dyn Error> {}
impl !Error for &str {}

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error T: !Error

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error

 T: ?Error
 ┬
 ╭─────┴─────╮
 ┴ ┴
T: Error T: !Error

Specialization

Specialization
Allows otherwise overlapping impls

Specialization
Allows otherwise overlapping impls
impl<T> Default for [T; 0] {}
impl<T> Default for [T; 1]
 where T: Default {}

Specialization
Allows otherwise overlapping impls
impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
 where T: Default {}

Specialization
Allows otherwise overlapping impls
impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
 where T: Default {}
Current implementation is unsound.

Specialization
Allows otherwise overlapping impls
impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
 where T: Default {}
Current implementation is unsound.

Largely stagnated.

Specialization
Allows otherwise overlapping impls
impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
 where T: Default {}
Current implementation is unsound.

Largely stagnated.

Used for optimizations; not present in public API

Specialization
Allows otherwise overlapping impls
impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
 where T: Default {}
Current implementation is unsound.

Largely stagnated.

Used for optimizations; not present in public API

"Relatively small extension to the trait system"

Crate preludes

Crate preludes
core::prelude and std::prelude are implicit by default.

Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Why not let every crate declare a prelude?

Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Why not let every crate declare a prelude?

#[prelude(as _)]
pub trait Itertools: Iterator { /* ... */ }

Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Why not let every crate declare a prelude?

#[prelude(as _)]
pub trait Itertools: Iterator { /* ... */ }
Opt-out as necessary.

Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Why not let every crate declare a prelude?

#[prelude(as _)]
pub trait Itertools: Iterator { /* ... */ }
Opt-out as necessary.

#[no_prelude(itertools)]
mod foo { /* ... */ }

Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Why not let every crate declare a prelude?

#[prelude(as _)]
pub trait Itertools: Iterator { /* ... */ }
Opt-out as necessary.

#[no_prelude(itertools)]
mod foo { /* ... */ }

The end user chooses which crate's preludes to use.

Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Why not let every crate declare a prelude?

#[prelude(as _)]
pub trait Itertools: Iterator { /* ... */ }
Opt-out as necessary.

#[no_prelude(itertools)]
mod foo { /* ... */ }

The end user chooses which crate's preludes to use.

[dependencies]
itertools = { prelude = true }

Stability attributes

Stability attributes
Used to indicate if an item is stable or not

Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

#[unstable(feature = "lazy_cell", issue = "109736")]
pub struct LazyLock<T, F = fn() -> T> { /* ... */ }

Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

#[unstable(feature = "lazy_cell", issue = "109736")]
pub struct LazyLock<T, F = fn() -> T> { /* ... */ }

All items require a stability attribute.pub

Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

#[unstable(feature = "lazy_cell", issue = "109736")]
pub struct LazyLock<T, F = fn() -> T> { /* ... */ }

All items require a stability attribute.pub

Unstable items are opt-in and require a feature gate.

Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

#[unstable(feature = "lazy_cell", issue = "109736")]
pub struct LazyLock<T, F = fn() -> T> { /* ... */ }

All items require a stability attribute.pub

Unstable items are opt-in and require a feature gate.

​
let _ = LazyLock::new(|| {});

Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

#[unstable(feature = "lazy_cell", issue = "109736")]
pub struct LazyLock<T, F = fn() -> T> { /* ... */ }

All items require a stability attribute.pub

Unstable items are opt-in and require a feature gate.

​
let _ = LazyLock::new(|| {});
#![feature(std::lazy_cell)]
let _ = LazyLock::new(|| {});

Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

#[unstable(feature = "lazy_cell", issue = "109736")]
pub struct LazyLock<T, F = fn() -> T> { /* ... */ }

All items require a stability attribute.pub

Unstable items are opt-in and require a feature gate.

​
let _ = LazyLock::new(|| {});
#![feature(std::lazy_cell)]
let _ = LazyLock::new(|| {});

"Library authors can continue to use stability attributes"

Progress

Progress
Integration with Cargo

Progress
Integration with Cargo

Reducing number of lang items & intrinsics

Progress
Integration with Cargo

Reducing number of lang items & intrinsics

Suggestions on deprecated items

Progress
Integration with Cargo

Reducing number of lang items & intrinsics

Suggestions on deprecated items

Unspecified behavior

Progress
Integration with Cargo

Reducing number of lang items & intrinsics

Suggestions on deprecated items

Unspecified behavior

Negative implementations

Progress
Integration with Cargo

Reducing number of lang items & intrinsics

Suggestions on deprecated items

Unspecified behavior

Negative implementations

Specialization

Progress
Integration with Cargo

Reducing number of lang items & intrinsics

Suggestions on deprecated items

Unspecified behavior

Negative implementations

Specialization

Crate preludes

Progress
Integration with Cargo

Reducing number of lang items & intrinsics

Suggestions on deprecated items

Unspecified behavior

Negative implementations

Specialization

Crate preludes

Stability attributes

The standard library is
special. Let's change that.

Jacob Pratt

@jhpratt

@jhpratt@mastodon.social

jacob@jhpratt.dev

jhpratt.dev

sponsor.jhpratt.dev

