
The standard
library is special.
Let's change that.
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How is the standard library
special? Why change?

use of nightly language features…on stable

can bypass coherence

has a prelude

not included with Cargo

no feature flags

no options for optimization

no versioning

incapable of making breaking changes

We already are making the standard library less special.
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Minimal subset

What inherently must be special-cased?

Language items

There are currently 130 language items.

Many are necessary; some can be removed.

Compiler intrinsics

There are currently 232 compiler intrinsics.

We can eliminate lots of these as well.
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Prior History
"std aware Cargo" working group

-Zbuild-std is available on nightly.

#[diagnostic::on_unimplemented]

Previously #[rustc_on_unimplemented]

RFC-accepted, partially implemented

#[deprecated] was originally only for the standard library.

Original implementation renamed to
#[rustc_deprecated] before Rust 1.0
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Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

#[deprecated(suggestion = "beta")]
fn alpha() {}

help: replace the use of the deprecated function
  |
L |     beta();
  |     ~~~~

Usable with cargo fix and rust-analyzer.
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The standard library relies
on unspecified behavior.

// Only std can make this guarantee.

The standard library relies on the size and layout of fat pointers.

Both are unspecified.

This code can only exist because the
compiler is coupled with the standard library.
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Promise to never implement a trait

Allow opting out of auto traits

Currently requires hackery

            MutexGuard<'_, ()>  : !Send
            Cell<()>            :         !Sync
            mut ()             : !Send + !Sync*

PhantomData<MutexGuard<'_, ()>> : !Send
PhantomData<Cell<()>>           :         !Sync
PhantomData<*mut ()>            : !Send + !Sync
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Specialization
Allows otherwise overlapping impls
impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
    where T: Default {}
Current implementation is unsound.

Largely stagnated.

Used for optimizations; not present in public API

"Relatively small extension to the trait system"
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Crate preludes
core::prelude and std::prelude are implicit by default.

alloc::prelude used to exist on nightly.

Why not let every crate declare a prelude?

#[prelude(as _)]
pub trait Itertools: Iterator { /* ... */ }
Opt-out as necessary.

#[no_prelude(itertools)]
mod foo { /* ... */ }

The end user chooses which crate's preludes to use.

[dependencies]
itertools = { prelude = true }
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Stability attributes
Used to indicate if an item is stable or not

#[stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

#[unstable(feature = "lazy_cell", issue = "109736")]
pub struct LazyLock<T, F = fn() -> T> { /* ... */ }

All  items require a stability attribute.pub

Unstable items are opt-in and require a feature gate.

​
let _ = LazyLock::new(|| {});
#![feature(std::lazy_cell)]
let _ = LazyLock::new(|| {});

"Library authors can continue to use stability attributes"
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The standard library is
special. Let's change that.
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