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How Is the standard library
special? Why change?

use of nightly language features...on stable
can bypass coherence

has a prelude

not included with Cargo

= no feature flags

= No options for optimization

= NO versioning

= incapable of making breaking changes

We already are making the standard library less special.
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Minimal subset
What inherently must be special-cased?

e Language items
= There are currently 130 language items.

» Many are necessary; some can be removed.

e Compiler intrinsics
= There are currently 232 compiler intrinsics.

= \WWe can eliminate lots of these as well.
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Prior History

e "std aware Cargo" working group

» -Zbuild-std is available on nightly.

e tHdiagnostic::on_unimplemented]

» Previously #{ rustc_on_unimplemented]

» RFC-accepted, partially implemented

e #{deprecated] was originally only for the standard library.

= Original implementation renamed to
tH rustc_deprecated] before Rust 1.0
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Suggestions for deprecated items

Indicate what a deprecated item is replaced with.

#H deprecated(suggestion = "beta")]
fn alpha() {}

help: replace the use of the deprecated function

|
L | beta();
|

i e e

Usable with cargo fix and rust-analyzer.
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The standard library relies
on unspecified behavior.

// 0Only std can make this guarantee.
e The standard library relies on the size and layout of fat pointers.
e Both are unspecified.

e This code can only exist because the
compiler is coupled with the standard library.
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Negative implementations

Promise to never implement a trait

o Allow opting out of auto traits

= Currently requires hackery

Phantom
Phantom
Phantom

Data<MutexGuard<' , ()>> : !Send
Data<Cell<()>> : 1Sync
Data<*mut ()> : !Send + !Sync
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Specialization

o Allows otherwise overlapping 1mpls

impl<T> Default for [T; 0] {}
default impl<T, const N: usize> Default for [T; N]
where T: Default {}

e Current implementation is unsound.
e Largely stagnated.

e Used for optimizations; not present in public API

e "Relatively small extension to the trait system"
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Crate preludes

e core::prelude and std :: prelude are implicit by default.
= alloc:: prelude used to exist on nightly.

e Why not let every crate declare a prelude?

t{prelude(as )]
pub trait Itertools: Iterator { /* ... */ }

e Opt-out as necessary.

t{no_prelude(itertools)]
mod foo { /* ... */ }

e The end user chooses which crate's preludes to use.

[dependencies]
itertools = { prelude = true }
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Stability attributes

e Used to indicate if an item is stable or not

#H stable(feature = "once_cell", since = "1.70.0")]
pub struct OnceCell<T> { /* ... */ }

t{unstable(feature = "lazy cell", issue = "109736")]
pub struct LazylLock<T, F = fn() -> T> { /* ... */ }

e All pub items require a stability attribute.

e Unstable items are opt-in and require a feature gate.

#t! [ feature(std:: lazy cell)]
let _ = LazyLock::new( |l {});

e "Library authors can continue to use stability attributes”
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e Integration with Cargo

e Reducing number of lang items & intrinsics
e Suggestions on deprecated items

e Unspecified behavior

e Negative implementations

e Specialization

e Crate preludes

e Stability attributes
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